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A great number of papers have been devoted to the propagation of 
a low-amplitude wave along a retarding system in the presence of an 
electron beam. An increase in the output power of such tubes (TWT, 
BWT, etc.) leads to the appearance of nonlinear effects. The propa- 
gation of electromagnetic waves of finite, but low amplitude has been 
examined in [1-5].  This makes it possible to take into account the in- 
fluence of nonlinear effects by approximate methods. In this case, 
however, the limits of applicability and validity of these obtained 
solutions remain open. The possibility of obtaining particular but ac- 
curate solutions of the initial nonlinear system of equations takes on 
great interest in this connection, Brillouin [6], in particular, found 
an accurate solution in the form of a stationary wave, when all of the 
unknown functions (for example, the beam velocity) are dependent 
upon the space coordinate z and time t as the combination g = z - Ut, 
where U is the constant phase velocity, 

Another, wider class of accurate solntions that describe the prop- 
agation of waves of finite amplitude along a retarding system with an 
electron beam is proposed below. It is assumed that the electron 
beam has only a longitudinal velocity component (strong focusing 
magnetic field), overtaking of one electron by another is absent, and 
that the effects of dissipation and the influence of the natural electro- 
magnetic field of the beam on wave propagation are negligible. The 
initiaI system of equations of motion and continuity and the equations 
for the retarding line, under the above-mentioned assumptions, are 
reduced to 

o - - / " + v - ~ - z  = n - N - z  ,: ot -~ + - N - z  = ~  ~1= , 

o2v t .o2v o2I ( _ _ ~  ) 
Oz~ d Ot2 =FL0"b~" ~ = 0  c =  , (t) 

where c and I are the velocity and current density of the electron 
beam; V the radio-frequency voltage in the retarding system; and L, 
C the self-inductance and capacitance per unit length. 

In the last equation, the upper sign refers to TWT interaction, 
and the lower sign corresponds to the case of motion of the electron 
beam in the field of the backward wave of the retarding system. 

A particular solution of system (1) will be a simple wave whose 
parameters I, v, V will be a function of only one of them [7], for 
example, v, i . e . ,  

I = I (~), V = V (v), v = v (z, t). (2) 

If we substitute (2) into (1), we reduce the particular solution to 
the form 

v = ~ { z - -  d [ I  ( v ) ,  v l t } ,  

dV dl I U 
~1 ~ = v - -  U, dv ~ - -  v (v - -  U) ' (3) 

where r is an arbitrary function, which is determined from the 
boundary or initial conditions, and U is the phase velocity of the 
wave, which satisfies the relation 

v (v --  U) ~ (t --  U 2 / c~) = :J: ~ L I U 2  (4) 

From the latter relation, we see that the phase velocity of the 
wave U, unlike the assumption in [6], must be a function of the 
velocity and current density of the electron beam, i . e . ,  U = U (I, v). 
Relations (3) in this case are equivalent to the Riemann solution in 
gas dynamics, which describes the propagation of a sound wave of 

finite amplitude [8]. The dependence of the phase velocity U upon 
the velocity of the sound wave v results in the fact that the wave 
profile is distorted with propagation. Beginning with some moment 

in time, the solution becomes three-valued, which corresponds to 
the appearance of a shock wave. The influence of dissipation ef- 
fects, which begin to play a considerable role in the presence of 
considerable distortion, can result in the fact that "reversing" of the 
front of the sound wave does not begin. 

Similar distortion of the wave front must also be observed in the 
case in question. Unlike gas dynamics, dispersion and not dissipation 

plays the role of Iimiter of the steepness of the front, as in a rarefied 
plasma [9]. The simultaneous action of dispersion and the nonlinear 
effects leads in this case to the propagation of a stationary wave along 
the retarding system [9]. The form of this wave will differ consider- 
ably from the form of the tube input signal. In particular, if a mono- 
chromatic signal of frequency ~o is delivered to the tube input, then 
harmonies mo can be isolated from the output signal. It is to be ex- 
pected that the amplitude of one of the harmonics, with proper se- 
lection of the parameters, may be equal to and even exceed the am- 
plitude of the fundamental harmonic. 

It must be noted, however, that for waves of fairly high ampli- 
tude, which exceeds the critical, a shock wave may appear even in 
the presence of dispersion, since the influence of the dispersion ef- 
fects is insufficient to limit the growth of steepness. 

In the general case, the propagation of a simple wave in implicit 
form is determined by system (a). Let us consider several particular 
cases, when the solution can be reduced to simple form. For definite- 
ness, let us consider a BWT system. 

A. Small nonlinear effects, If at the input of the tube at z = O 
a velocity perturbation w = cos • t is given whose amplitude is small 
in comparison with the constant velocity of the electron flux, then 
the expressions for v, I, and U are conveniently written as the sum of 
two terms 

v =  v o + w ,  I =  i o - i ,  U =  u o +  u ,  

(w <~ vo, i <~ i,,, u ,~'uo). 

If we substitute this expansion into system (a) and satisfy the 
boundary condition at z = 0, we find that the expression for the per- 
turbed velocity in the first approximation of the expansion in the 
small parameter, which characterizes the smallness of the nonlinear 
effects, is reduced to the form 

(03t - -  (0~ :" [ OlZ %k' w = a cos + a cos ~o~t - -  

3 r  uo2 
a - -  2 vQc 2 - u o  s " ( 5 )  

Here u0 is one of the roots of the equation 

v0 (vo -- uo) ~ (t - -  Uo 2 / c~) 2 = Tlliouo ~ (6) 

which coincides with the dispersion equation in the linear theory of 

backward-wave tubes. In the most important case, when the phase 
velocity of the wave is almost equal to the beam velocity (u0 ~ v0) 
but c ~ v0, we obtain 

( ~Lio~' /'/,l 

3 ~ [ r o -  v0 2 ~'/, ( nLio ~'/, 1 
~ ' 2 - - ~ o  l " l - t ~ /  ~I;;-o / J' (7) 

From (5)-(7), we see that the solution is stable when the velocity 
of the electron beam is less than the phase velocity of the retarding 
system v0 < c. The reverse inequality v0 > c must be satisfied for 
wave stability for TWT systems. If u0 ~ c = v0, then 
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The above investigation shows that the influence of small  non- 
linear effects leads to distortion of the front and, in the final analysis, 
to the appearance of harmonies even in the first approximation of the 
expansion. 

B. Fast wave of finite amplitude (U >> v). In this l imiting case 
the phase velocity of the wave 

U ~ :Jz e ]/'1 + "qLI / v . (8) 

If we substitute this relation into the  last equation of system (3), 
we obtain 

i - -  ] / [ - t -  ~lLI / v  ~ @ A .  (9) 

Here A is a constant, which is determined from the boundary or 
initial conditions. Relation (9) determines in implicit  form the de-  
pendence of the current density upon the velocity of the electron 
beam. If we determine I(v) from (8), we can determine the depen- 
dence of the phase velocity of the wave upon v = V(z, t ) .  

In particular, 

~IL1 A ' v ( v__~ when ~ I L I  _ .>~1. 

In the general case, system (3) cannot be solved in explicit  form. 
Unlike the initial system, however, this system is simple and conve-  
nient for numerical  integration by means of electronic computers. 
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